Magnetohydrodynamic counter-rotating vortices and synergetic stabilizing effects of magnetic field and plasma flow

نویسندگان

  • G. N. Throumoulopoulos
  • H. Tasso
چکیده

A nonlinear two-dimensional steady state solution in the framework of hydrodynamics describing a row of periodic counter-rotating vortices is extended to the magnetohydrodynamic (MHD) equilibrium equation with incompressible flow of arbitrary direction. The extended solution covers a variety of equilibria because four surface quantities remain free. Similar to the case of the MHD cat-eyes equilibrium [Throumoulopoulos et al., J. Phys. A: Math. Theor. 42, 335501 (2009)] and unlike linear equilibria, the flow has a strong impact on isobaric surfaces by forming pressure islands located within the counter-rotating vortices even for values of β (defined as the ratio of the thermal pressure over the external axial magnetic-field pressure) on the order of 0.01. Also, the axial current density is appreciably modified by the flow. Furthermore, a magnetic-field-aligned flow of experimental fusion relevance, i.e for Alfvén Mach numbers of the order of 0.01, and the flow shear in combination with the variation of the magnetic field perpendicular to the magnetic surfaces have significant stabilizing effects potentially related to the equilibrium nonlinearity. The stable region is enhanced by an external axial magnetic field. Published in Phys. Plasmas 17, 032508 (2010)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Magnetic Field on the Rotating Flow in a Similar Czochralski Configuration

We present a numerical study of the rotating flow generated by two rotating disks in co-/counter-rotating, inside a fixed cylindrical enclosure similar to the Czochralski configuration (Cz).  The enclosure having an aspect ratio A = H/Rc equal to 2, filled with a low Prandtl number fluid (Pr = 0.011), which is submitted to a vertical temperature gradient. The finite volume method has been used ...

متن کامل

Thermal Convection in a (Kuvshiniski-type) Viscoelastic Rotating Fluid in the Presence of Magnetic Field through Porous Medium (TECHNICAL NOTE)

  The effect of magnetic field on an incompressible (Kuvshiniski-Type) viscoelastic rotating fluid heated from below in porous medium is considered. For the case of stationary convection, magnetic field and medium permeability have both stabilizing and destabilizing effect on the thermal convection under some conditions whereas rotation has a stabilizing effect on the thermal convection. In the...

متن کامل

Analytical and numerical investigation of heat and mass transfer effects on magnetohydrodynamic natural convective flow past a vertical porous plate

The aim of this investigation is to study the effect of hall current on an unsteady natural convective flow of a viscous, incompressible, electrically conducting optically thick radiating fluid past a vertical porous plate in the presence of a uniform transverse magnetic field. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. Analytical a...

متن کامل

Free convective heat and mass transfer of magnetic bio-convective flow caused by a rotating cone and plate in the presence of nonlinear thermal radiation and cross diffusion

This article explores the heat and mass transfer behaviour of magnetohydrodynamic free convective flow past a permeable vertical rotating cone and a plate filled with gyrotactic microorganisms in the presence of nonlinear thermal radiation, thermo diffusion and diffusion thermo effects. We presented dual solutions for the flow over a rotating cone and a rotating flat plate cases. Similarity var...

متن کامل

A Paired Quasi-linearization on Magnetohydrodynamic Flow and Heat Transfer of Casson Nanofluid with Hall Effects

Present study explores the effect of Hall current, non-linear radiation, irregular heat source/sink on magnetohydrodynamic flow of Casson nanofluid past a nonlinear stretching sheet. Viscous and Joule dissipation are incorporated in the energy equation. An accurate numerical solution of highly nonlinear partial differential equations, describing the flow, heat and mass transfer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010